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The present paper deals with the natural vibration of thin circular and annular plates

using Hamiltonian approach. It is based on the conservation principle of mixed energy

and is constructed in a new symplectic space. A set of Hamiltonian dual equations with

derivatives with respect to the radial coordinate on one side of the equations and to the

mixed energy. The separation of variables is employed to solve Hamiltonian dual

equations of eigenvalue problem. Analytical frequency equations are obtained based on

different cases of boundary conditions. The natural frequencies are the roots of the

frequency equations and corresponding mode functions are in terms of the dual

variables q1(r, y). Three basic edge-constraint cases for circular plates and nine

edge-constraint cases for annular plates are calculated and the results are compared

well with existing ones.

& 2010 Published by Elsevier Ltd.
1. Introduction

In recent years, lightweight plate structures have been widely used in many engineering applications. Components of
circular plates and annular plates are commonly used in aeronautical, marine and nuclear structures. In industrial applications,
vibration analysis of circular and annular plates is of some practical importance. A vast amount of literature for
natural vibration studies of circular plates and annular plates based on two-dimensional theories is available.
A comprehensive survey of the previous work is documented in the monograph of Leissa [1]. After that, Narita and Leissa
[2,3] analyzed the simply supported plates and free orthotropic elliptical plates by asymptotic expansions and modified Ritz
method. Kim and Dickinson [4] obtained an algebraic eigenvalue equation for the free, transverse vibration of thin, annular and
sectorial plates based on the Rayleigh–Ritz method with orthogonally generated polynomials as admissible function. Wang and
Thevendran [5,6] presented a variant of the Rayleigh–Ritz method for solving the free vibration problem of annular plates with
internal axisymmetric supports and extended the method to the problem of elastic buckling of thin annular plates under
in-plane radial loads along either free or simply supported with elastic rotational restraints at inner and outer edges. Liew et al.
[7] obtained the solutions of free flexural vibration of circular and annular Mindlin plates lying on multiple internal concentric
ring supports by the Rayleigh–Ritz method with an admissible displacement function expressed in terms of a set of simple
polynomials. Then, Liew et al. [8] developed the method to the buckling and vibration of annular Mindlin plates with internal
concentric ring supports subjected to external and internal isotropic in-plane radial pressure. Rajalingham et al. [9] studied the
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Nomenclature

D flexural rigidity
E Young’s modulus
h thickness
H Hamiltonian function
L Lagrangian function
M equivalent moment
Mr, My bending moment perpendicular to r-, y-axis
Mry twisting moment
Q shear force in the y-direction
Qr, Qy transverse shear forces
w(r, y) natural mode
W(r, y, t) deflection

U potential energy density
Kr, ky, krycurvatures
mj eigenvalues of a Hamiltonian operator matrix
mðaÞj , mðbÞj two group eigenvalues
u Poisson’s ratio
r mass density
j circumferencial rotation angle
wðaÞj , wðbÞj two group eigenfunction-vectors
o natural frequency
(x, y) Cartesian coordinates
(r, y) polar coordinate
H Hamiltonian operator matrix
W state vector in the symplectic space
q, p mutually dual vectors
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plate vibrations by the Rayleigh–Ritz method with the plate characteristic functions as shape functions. Then, Rajalingham et al.
[10,11] developed a variational reduction method to analyze the vibration modes and frequency. Chakraverty et al. [12–14]
provides natural vibration natural frequencies of plates of various geometries by using two-dimensional boundary
characteristic orthogonal polynomials in the Rayleigh–Ritz method. Similarly, Singh and Muhammad [15] used a modified
form of the Rayleigh–Ritz method in which the shape functions are used as the admissible displacement fields to solved the
natural frequencies and the associated mode shapes. Furthermore, Lim et al. [16] obtained the exact vibration frequencies for
transverse shear vibration modes of thick plates by using the state-space technique. It provided a complete spectrum of
frequencies, even for very high frequencies without suffering from numerical instability. Wang and Wang [17] analyzed the
fundamental frequencies for annular plates with small core sizes. Asymptotic expansion on the exact characteristic equations
delineates the singular rise (infinite slope) of the fundamental frequency when the core size is close to zero. By using
finite element methods, Bardell et al. [18] describes a general analysis of the vibration characteristics of thin, open, conical
isotropic panels using the h-p version of the finite element method in conjunction with Love’s thin shell equations. Li and Li [19]
analyzed the natural vibration of circular and annular sectorial thin plates using curve strip Fourier p-element. For the smart
materials, Ebrahimi and Rastgo [20] investigated the natural vibration behavior of thin circular functionally graded
plates integrated with two uniformly distributed actuator layers made of piezoelectric (PZT4) material based on the classical
plate theory.

In view of these literatures, it can be seen that all of the methods used the governing equation derived previously in
Lagrangian sense involving only one kind of variables in terms of the strain energy. The solution method is based on
assumed displacement functions in one or two spatial dimensions. Zhong and his associates [21] developed an analytical
symplectic approach for some basic problems in solid mechanics and in elasticity. It is based on the Hamiltonian form with
Legendre’s transformation. The resulting Hamiltonian dual equations have derivatives with respect to the radial coordinate
alone on one side and the angular coordinate alone on the other side. The separation of variables is employed to solve the
resulting differential eigenvalue problem and analytical solutions could be obtained by the expansion of eigenfunctions.
Unlike the classical semi-inverse methods with pre-assumed trial functions, the symplectic elasticity approach is
rigorously rational without any guess functions. All geometric and natural boundary conditions are imposed on the system
in a natural manner. It is rational and systematic with a clearly defined, step-by-step derivation procedure. Based on the
symplectic approach, many complex problems are solved systematically. Leung et al. [22,23] obtained the analytic stress
intensity factors for finite elastic disk and edge-cracked circular piezoelectric shafts using symplectic expansion. After that,
Leung et al. [24,25] applied the Hamiltonian approach to solve the thermal stress intensity factors. Lim et al. [26] presented
the exact analytical solutions for natural vibration of rectangular thin plates with two opposite edge simply supported.
Xing and Liu [27] extend the Lim results [26] for all combinations of boundary conditions.

In the present study the symplectic expansion is used to obtain the natural modes of the Kirchhoff circular and annular
plates. With the aid of Hamiltonian principle of mixed energy, a set of Hamiltonian dual equations are obtained. The
differential eigenvalue problem is then solved using the separation of variables. The solution is expanded in terms of the
symplectic adjoint orthogonal eigensolutions with coefficients to be determined by the boundary conditions. Unlike most
research works which are mainly concerned with lower-frequency modes, this method provides low and high mode results
for nine basic cases boundary conditions at the inner and outer edges. Numerical comparisons to the classical solutions in
literature are presented to validate the efficiency and accuracy of the symplectic method.
2. Basic equations

Consider an isotropic, homogeneous annular plate with uniform thickness h in cylindrical coordinate (r, y, z) with the
z-axis along the longitudinal direction. R1 and R2 are the inner radius and outer radius as shown in Fig. 1.



Fig. 1. Geometry and coordinate system of the annular plate.

Z.H. Zhou et al. / Journal of Sound and Vibration 330 (2011) 1005–1017 1007
It is assumed that the thickness h is small compared with in-plane dimensions. We take the (r, y) plane for the middle
plane of the plate and assume the deflection W(r, y, t) to be small compared with the thickness h. Define q/qr�qr, q/qy�qy
and the partial differential equation for free vibrations of thin plates can be written in terms of deflection as [27]

r
2
r

2Wþrh@2
t W=D¼ 0 (1)

where r is the mass density, D¼ Eh3=½12ð1�u2Þ� is the flexural rigidity, and r2 is the Laplacian. It is well-known that the
normal vibrations of an elastic linear system are harmonic, therefore the deflection in normal vibrations of thin plate can
be assumed to be

Wðr, y, tÞ ¼wðr, yÞeiot (2)

where o is the natural frequency and i2=�1. Substitution of Eq. (2) into Eq. (1) yields a four order partial differential
equation involving natural mode w(r, y),

r2r2wþrho2w=D¼ 0 (3)

Based on the Kirchhoff theory, the equations of motion in polar for harmonic natural vibration can be expressed in the
frequency domain as

@rQrþQr=rþ@yQy=r¼�rho2w (4)

where Qr=qrMr+qyMry/r+(Mr�My)/r; Qy=qrMry+qyMy/r+2Mry/r. Here Mr, My, Mry, Qr and Qy are the bending moments,
twisting moment and transverse shear forces. The relations of moment resultants and curvatures in the mid-surface of the
plate are

Mr ¼DðkrþukyÞ

My ¼DðkyþukrÞ

Mry ¼Dð1�uÞkry

8><
>: (5)

where u is Poisson’s ratio, E is Young’s modulus. The curvatures can be expressed in terms of the displacement as

kr ¼�@
2
r w, ky ¼�ðr@rwþ@

2
ywÞ=r2, kry ¼�@rð@yw=rÞ (6)

The potential energy density function is presented by

U ¼D½ðkrþkyÞ
2
�2ð1�uÞðkrky�k2

ryÞ�=2 (7)

The y-coordinate in the Lagrangian system is modeled as the time-analogy coordinate in the Hamiltionian system. An
over dot is used to indicate differentiation with respect to the y-coordinate, i.e. ðÞ

d
¼ @y, and further denote the

circumferencial rotation angle as

j¼� _w=r (8)

The Lagrangian function combining the flexural potential energy and the work for external force can be written as

Lðw, _wÞ ¼ rUðw, _wÞ�rrho2w2=2

¼Drf½@2
r wþð@rwÞ=r� _j=r�2�2ð1�uÞ½ð@2

r wÞðð@rwÞ=rþ €w=rÞ�ðð@r _wÞ=r

þ _w=r2Þ
2
��ðjþ _w=rÞ½ð@2

r
_wÞ=rþð@r _wÞ=r2þ _w=r3��rho2w2g=2 (9)

With the aid of the Hamiltonian principle, for equilibrium

d
ZZ

O
Lðw, _wÞdr dy¼ 0 (10)

here O is the integral region.
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3. Forming the Hamiltonian system

Denote the generalized displacement vector as

q¼ fw, jgT � fq1, q2g
T (11)

In the Hamiltonian formulation, the dual (conjugate) vector p is introduced by the variation of the Lagrangian with
respect to _q

p¼
dL

d _q ¼
�D½ð@2

r
_wÞ=rþð@r _wÞ=r2þ _w=r3�

�D½@2
r wþð@rwÞ=r� _j=r�

( )
¼

Q

M

� �
�

p1

p2

( )
(12)

Therefore, the dual variables Q=Qy and M=(Mr+My)/(1+u) are derived to be the shear force in the y-direction and
equivalent moment respectively. The Hamiltonian function can be obtained by the Legendre transformation

Hðq, pÞ ¼ pT _q�Lðq, _qÞ ¼ rM2=ð2DÞþM@rðr@rwÞ�rjQþrrho2w2=2 (13)

From the Hamiltonian function (13), the fundamental equations, or the dual equations, of the Hamiltonian system are
obtained by variation

_q ¼ dH=dp

_p ¼�dH=dq

(
(14)

or

_W ¼HW (15)

where W={q, p}T is the state vector in the symplectic space, and H is the Hamiltonian matrix operator given by

H¼

0 �r 0 0

@rðr@rÞ 0 0 r=D

rho2r 0 0 �@rðr@rÞ

0 0 r 0

2
6664

3
7775 (16)

The associated boundary conditions along r=ri (i=1, 2) could be one of the following three conditions:
(1).
 For a clamped edge (C), the deflection and rotation must be zero, i.e.

q19ri
¼ 0, @rq19ri

¼ 0 (17)

For a simply supported edge (S), the deflection and bending moment must be zero, i.e.
(2).
q19ri
¼ 0, ½uM�Dð1�uÞ@2

r w�9ri
¼ 0 (18)

For a free edge (F), the bending moment and total equivalent shear force must be zero, i.e.
(3).
½uM�Dð1�uÞ@2
r w�9ri

¼ 0, ½ð2�uÞ@rMþð1�uÞM=rþDð1�uÞðr@rwÞ=r�9ri
¼ 0 (19)

For the natural vibration of circular plate, only three kinds of outer edge-constraint conditions are concerned, they are C,
S and F. It is more complex for the natural vibration of annular plate since there are nine cases of the edge-constraint
conditions, i.e. CC, SS, FF, CS, CF, SC, SF, FC, FS at both the outer and inner edges.

4. Separation of variables and adjoint symplectic orthonormal relations

For the homogeneous Hamiltonian system according to Eq. (15), it is natural to apply the method of separation of
variables to reduce it to a differential eigenvalue problem which is very different from the algebraic eigenvalue problem for
finding the natural modes of the finite element equations. To this end, the state vector can be expressed as

Wðr, yÞ ¼wjðrÞe
mjy (20)

where mj is the unknown eigenvalue and wj is the eigenfunction which has to satisfy the homogenous boundary conditions
(17)–(19), so that the differential eigenvalue equation for mj and wj is

Hwj ¼ mjwj (21)

The Hamiltionian operator matrix H has the following special properties:
If mj is an eigenvalue of a Hamiltonian operator matrix, �mj is also an eigenvalue, and there are infinite eigenvalues

which can be divided into two sets:

ðaÞ : mðaÞj , j¼ 1,2,. . ., ReðmðaÞj Þ40 or ReðmðaÞj Þ ¼ 0 and ImðmðaÞj Þ40 (22)
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ðbÞ : mðbÞj , j¼ 1,2,. . ., mðbÞj ¼�m
ðaÞ
j (23)

whose eigenfunction-vectors are denoted, respectively, as wðaÞj and wðbÞj . Introduce an inner product /wi, J, wjS¼R
Oðqipj�qjpiÞdy between any two of them. There are adjoint symplectic orthonormal relations

wðaÞn , J, wðaÞk

D E
¼ wðbÞn , J, wðbÞk

D E
¼ 0, wðaÞn , J, wðbÞk

D E
¼� wðbÞn , J, wðaÞk

D E
¼ dnk (24)

where J¼
0 I

�I 0

� �
is the symplectic identity matrix, dij is the Kronecker delta which equals to one when i=j and equals to zero

otherwise.

5. Eigensolutions and frequency equations

Homogeneous Eq. (21) with appropriate boundary conditions are discussed in this section. According to the continuity
condition at y=0 and y=2p, it has

Wðr, 0Þ ¼Wðr, 2pÞ (25)

Based on Eq. (25), the eigenvalues can be obtained as

mn ¼ in, i¼
ffiffiffiffiffiffiffi
�1
p

, n¼ 0, 71, 72, . . . (26)

5.1. The zero-eigenvalue solutions

Since the solutions of zero-eigenvalues usually have particular physical meaning in the Hamiltonian system, the
solutions of zero- and nonzero-eigenvalues should be discussed separately. Consider the equation Hw=0, the fundamental
solution and the Jordan form solution can be expressed in terms of the zeroth-order Bessel functions and represented by
two groups:

wð0, aÞ
¼

A0J0ðgrÞþB0Y0ðgrÞþC0I0ðgrÞþD0K0ðgrÞ

0

0

g4A0J0ðgrÞþg4B0Y0ðgrÞþg4C0I0ðgrÞþg4D0K0ðgrÞ

8>>>><
>>>>:

9>>>>=
>>>>;

wð0, bÞ
¼

½A0J0ðgrÞþB0Y0ðgrÞþC0I0ðgrÞþD0K0ðgrÞ�

�½A0J0ðgrÞþB0Y0ðgrÞþC0I0ðgrÞþD0K0ðgrÞ�=r

½g4A0J0ðgrÞþg4B0Y0ðgrÞþg4C0I0ðgrÞþg4D0K0ðgrÞ�=r

½g4A0J0ðgrÞþg4B0Y0ðgrÞþg4C0I0ðgrÞþg4D0K0ðgrÞ�

8>>>><
>>>>:

9>>>>=
>>>>;

(27)

where J0 and Y0 are zeroth-order Bessel function of the first kind and second kind, respectively, I0 and K0 are zeroth-order
modified Bessel function of the first kind and second kind, respectively, g4 ¼ rho2=D and A0, B0, C0, D0 are constants to be
undetermined.

Consider the circular plate problem, i.e., R1=0, the displacement at the center of plate are bounded. Since the Bessel
functions and modified Bessel function of the second kind are infinite at r=0, the solution can be simplified as two groups

wð0,aÞ
¼

A0J0ðgrÞþC0I0ðgrÞ

0

0

A0g4J0ðgrÞþC0g4I0ðgrÞ

8>>>><
>>>>:

9>>>>=
>>>>;

, wð0,bÞ
¼

½A0J0ðgrÞþC0I0ðgrÞ�y
�½A0J0ðgrÞþC0I0ðgrÞ�=r

½A0g4J0ðgrÞþC0g4I0ðgrÞ�=r

½A0g4J0ðgrÞþC0g4I0ðgrÞ�y

8>>>><
>>>>:

9>>>>=
>>>>;

(28)

It should be pointed out that the Jordan form solutions do not satisfy the continuity condition (25), so it should
be eliminated in the following parts. The physical interpretations of the fundamental solution (27) and (28) are the
axis-symmetric natural vibration solutions for circular annular and circular plate problems, respectively.

5.2. The nonzero-eigenvalue solutions

In this section, the nonzero-eigenvalues solutions will be studied. Substituting mn=in (na0) into Eq. (21), the
eigensolutions can be expressed in terms of the Bessel functions

wn ¼

A1JnðgrÞþB1YnðgrÞþC1InðgrÞþD1KnðgrÞ

A2JnðgrÞ=rþB2YnðgrÞ=rþC2InðgrÞ=rþD2KnðgrÞ=r

A3JnðgrÞ=rþB3YnðgrÞ=rþC3InðgrÞ=rþD3KnðgrÞ=r

A4JnðgrÞþB4YnðgrÞþC4InðgrÞþD4KnðgrÞ

8>>>><
>>>>:

9>>>>=
>>>>;

(29)
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where Jn and Yn are Bessel function of the first kind and second kind, respectively, In and Kn are modified Bessel function of
the first kind and second kind, respectively, g4 ¼ rho2=D and Ai, Bi, Ci, Di (i=1,2,3,4) are constants to be undetermined by
the boundary conditions (17)–(19). Substituting the solutions (29) into Eq. (21), the following relationships among the
unknown constants in terms of {A1, B1, C1, D1} are found:

A2 ¼�in=A1, B2 ¼�in=B1, C2 ¼�in=C1, D2 ¼�in=D1, A3 ¼ ing4A1, B3 ¼ ing4B1,

C3 ¼�ing4C1, D3 ¼�ing4D1, A4 ¼ g4A1, B4 ¼ g4B1, C4 ¼ g4C1, D4 ¼ g4D1 (30)

It should be pointed out that, the eigensolution (29) for the natural vibration of annular plate can be reduced to that of
circular plate. Consider, if R1=0, that the displacement at the center of plate are bounded. However, the Bessel functions
and modified Bessel function of the second kind are infinite at r=0, thus Bj=Dj=0 (j=1, 2, 3, 4). The eigensolution for the
circular plate are represented in the form:

wn ¼

A1JnðgrÞþC1InðgrÞ

A2JnðgrÞ=rþC2InðgrÞ=r

A3JnðgrÞ=rþC3InðgrÞ=r

A4JnðgrÞþC4InðgrÞ

8>>>><
>>>>:

9>>>>=
>>>>;

(31)

where the constants Aj and Cj (j=1, 2, 3, 4) are related by Eq. (30). The physical interpretations of Eqs. (29) and (31) are the
asymmetric natural vibration solutions for circular annular and circular plate problems, respectively.

For convenience, the solutions (27), (28), (29) and (31) can be expressed in a unified form:

wn ¼

A1JnðgrÞþDðR1ÞB1YnðgrÞþC1InðgrÞþDðR1ÞD1KnðgrÞ

A2JnðgrÞ=rþDðR1ÞB2YnðgrÞ=rþC2InðgrÞ=rþDðR1ÞD2KnðgrÞ=r

A3JnðgrÞ=rþDðR1ÞB3YnðgrÞ=rþC3InðgrÞ=rþDðR1ÞD3KnðgrÞ=r

A4JnðgrÞþDðR1ÞB4YnðgrÞþC4InðgrÞþDðR1ÞD4KnðgrÞ

8>>>><
>>>>:

9>>>>=
>>>>;

(32)

in which D(R1)=1�d(R1), d(R1) is the Dirac Delta function which equals to one when R1=0 and equals to zero otherwise.
After the eigensolutions have been obtained in the form of Eq. (32), the remaining problems are to determine the four
unknown constants A1–D1 and the frequency equation by means of the boundary conditions. Substituting the solutions
(32) into the boundary conditions (17)–(19), one has

Ev¼ 0 (33)

where v={A1, B1, C1, D1}T, E is the matrix to be established by the boundary conditions along r=R1 and R2. For obtaining
nontrivial solutions, the determinant of coefficients matrix of Eq. (33) must be zero, leading to the following equation:

9E9¼ 0 (34)

Eq. (34) is the frequency equation and the frequencies of the natural vibration are the roots of the transcendental
equation. There are infinite numbers of modes for each set of eigensolution n. When denoting m as the number of modes
taken for eigensolution n, there will be mn total number of terms. After solving the frequency equation (34), the nontrivial
solution of Eq. (33) can be represented by linear combinations of the modes and the remaining unknown constants
{A1, B1, C1, D1} are determined up to a normalization constant. The normal mode function w(r,y) will be determined also.

To illustrate the application of the symplectic methodology for natural vibration problems, for example, a circular plate
here is assumed clamped at the outer edge. According the boundary condition (17), Eq. (33) becomes

JnðgR2Þ InðgR2Þ

n=R2JnðgR2Þ�gJnþ1ðgR2Þ n=R2InðgR2Þ�gInþ1ðgR2Þ

" #
A1

C1

( )
¼ 0 (35)

The corresponding frequency equation is obtained from Eq. (34),

InðgR2ÞJnþ1ðgR2Þþ JnðgR2ÞInþ1ðgR2Þ ¼ 0 (36)

The roots g of Eq. (36) are the frequency of natural vibration for the completely clamped circular plate. From Eq. (35), we
have

C1 ¼ A1JnðgR2Þ=InðgR2Þ (37)

Letting A1=1, we can determine the normal mode function for each frequency g

wðr, yÞ ¼ ½JnðgrÞþ JnðgR2ÞInðgrÞ=InðgR2Þ�e
iny (38)

For other boundary conditions including the other cases for the circular plates and the nine cases for the annular plates,
similar results will be obtained in the same way.

Finally, the solutions of the homogenous equation (21) can be the linear combinations of eigensolutions,

W¼
X

m ¼ 1

að0Þm wð0, aÞ
m þbð0Þm wð0, bÞ

m

� �
þ
X

m ¼ 1

X
n ¼ 1

amnw
ðaÞ
mnem

ðaÞ
n yþ

X
n ¼ 0

bmnw
ðbÞ
mnem

ðbÞ
n y

 !
(39)

with undetermined coefficients að0Þm , bð0Þm , amn and bmn to be determined by the initial conditions.



Table 1

Comparison of the present results with classical plate theory for the lowest six natural frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
(u=0.3).

Results Mode number

1 2 3 4 5 6

Circular plate with free boundary condition

Sato [28] 5.3592 9.0120 – – – –

Narita [3] 5.3583 9.0031 12.439 20.475 – –

Leissa [1] 5.253 9.084 12.23 20.52 – –

Present 5.3583 9.0031 12.439 20.475 21.835 33.495

Circular plate with hard simply supported boundary condition

Leissa and Narita [2] 4.9352 13.898 25.613 29.720 39.957 48.479

Kim and Dickinson [4] 4.9352 13.898 25.613 29.720 39.958 48.480

Li and Li [19] – 13.898 25.613 – 39.957 48.479

Present 4.9352 13.898 25.615 29.719 39.957 48.479

Circular plate with clamped boundary condition

Carrington [29] 10.216 21.260 34.880 39.771 51.040 60.820

Kim and Dickinson [4] 10.216 21.260 34.877 39.771 51.030 60.829

Leissa [1] 10.216 21.26 34.88 39.771 51.04 60.82

Present 10.216 21.260 34.877 39.771 51.031 60.829

Table 2

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the circular plate with free boundary condition (u=0.3).

n Mode number

1 2 3 4 5

0 9.0031 38.4432 87.7502 156.8183 245.6335

1 20.4745 59.8116 118.9573 197.8718 296.5401

2 5.3583 35.2601 84.3661 153.3059 242.0361

3 12.4390 53.0078 111.9450 190.6918 289.2378

4 21.8352 73.5426 142.4309 231.0305 339.4128

5 33.4949 96.7553 175.7353 274.2522 392.5053

Table 3

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the circular plate with hard simply supported boundary condition (u=0.3).

n Mode number

1 2 3 4 5

0 4.9352 29.7193 74.1561 138.3203 222.2150

1 13.8983 48.4786 102.7738 176.8012 270.5676

2 25.6148 70.1169 134.2978 218.2023 321.8417

3 39.9574 94.5491 168.6749 262.4847 376.0121

4 56.8422 121.7027 205.8525 309.6073 433.0487

5 76.2034 151.5182 245.7780 359.5353 492.9189

Table 4

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the circular plate with clamped boundary condition (u=0.3).

n Mode number

1 2 3 4 5

0 10.2158 39.7711 89.1045 158.1841 247.0064

1 21.2604 60.8287 120.0807 199.0534 297.7601

2 34.8770 84.5826 153.8150 242.7205 351.3370

3 51.0306 111.0218 190.3037 289.1799 407.7295

4 69.6666 140.1084 229.5200 338.4112 466.9250

5 90.7391 171.8030 271.4280 390.3924 528.9021
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6. Numerical results and comparisons

Many results have been reported. However, most of these works are mainly concerned with lower-mode frequency
parameters or the fundamental frequency for certain boundary conditions. The method of the present paper can deal with
all kinds of combinations of free, clamped and simply supported boundary conditions. The three edge-constraint cases for
circular plates and the nine edge-constraint cases for annular plates are analyzed in this section. Natural frequency
parameters are listed in tables. The accuracy of these results is verified by existing solutions.
6.1. Natural frequencies for the circular plate

Table 1 tabulates the comparison of the lowest six frequency parameters for circular plates with u=0.3. It is seen that
the present results for all the three cases boundary conditions are in excellent agreement with the classical results. The
rigid body modes are not shown in the tables. It is interesting to note the two natural modes that has been missed by Li and
Li [19] for the circular plate with hard simply supported boundary condition.

Tables 2–4 tabulate the first five non-dimensional frequencies for each eigensolution n in Eq. (32). In general, it is seen
in Tables 3 and 4 that the natural frequencies are monotonically increasing with increasing eigensolution number n. It is
not so for the free boundary condition in Table 2. It is shown that very high modes can be calculated without difficulties.
Table 5

Comparison of the present results with classical plate theory for the lowest six natural frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
(u=1/3, R1/R2=0.4, ANSYS: h/

R2=0.001).

Results Mode number

1 2 3 4 5 6

Annular plate with clamped outer and inner edge (CC)

Chakraverty et al. [14] 61.88 63.04 66.87 74.97 86.88 105.7

ANSYS 61.700 62.809 66.433 73.291 84.096 99.195

Present 61.872 62.996 66.672 73.630 84.594 99.904

Annular plate with simply supported outer and inner edge (SS)

Chakraverty et al. [14] 28.08 30.09 36.27 47.23 61.69 80.11

ANSYS 28.127 30.122 36.166 46.263 60.211 77.654

Present 28.184 30.079 36.143 46.321 60.423 78.089

Annular plate with free outer and inner edge (FF)

Chakraverty et al. [14] 4.533 8.583 11.77 17.80 21.27 32.92

ANSYS 4.6068 8.5837 11.945 17.248 21.562 31.591

Present 4.5325 8.5510 11.765 17.043 21.262 31.356

Annular plate with clamped outer and simply supported inner edge (CS)

Chakraverty et al. [14] 44.93 46.74 52.39 62.60 77.23 96.32

ANSYS 44.982 46.790 52.396 62.123 76.047 93.928

Present 44.932 46.735 52.353 62.148 76.230 94.342

Annular plate with clamped outer and free inner edge (CF)

Chakraverty et al. [14] 13.50 19.46 31.74 47.81 66.81 72.00

ANSYS 13.566 19.609 31.588 46.970 65.904 66.448

Present 13.500 19.389 31.338 46.855 65.984 66.924

Annular plate with simply supported outer and clamped inner edge (SC)

Chakraverty et al. [14] 41.27 42.63 47.52 56.04 68.66 87.43

ANSYS 41.155 42.428 46.529 54.063 65.496 80.901

Present 41.261 42.548 46.699 54.332 65.918 81.530

Annular plate with simply supported outer and free inner edge (SF)

Chakraverty et al. [14] 4.748 12.06 23.56 37.91 47.32 53.27

ANSYS 4.7598 12.037 23.178 37.222 47.115 52.890

Present 4.7436 11.907 23.098 37.272 47.282 52.890

Annular plate with free outer and clamped inner edge (FC)

Chakraverty et al. [14] 9.082 9.176 10.53 15.34 23.33 34.67

ANSYS 9.0151 9.1102 10.450 14.925 22.918 33.917

Present 9.0719 9.1294 10.366 14.726 22.530 33.455

Annular plate with free outer and simply supported inner edge (FS)

Chakraverty et al. [14] 3.634 4.001 6.918 13.26 22.06 33.45

ANSYS 3.6782 4.0221 6.8359 13.040 22.054 33.549

Present 3.6671 3.9221 6.6546 12.793 21.464 33.054
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6.2. Natural frequencies for the annular plate

Table 5 presents the comparison of the lowest six frequency parameters for the annular plates with u=1/3. It is observed
that the present results for the nine cases boundary conditions are almost identical to those reported by Chakraverty et al.
[14] and the ANSYS results. The ANSYS results are calculated by shell 63 elements having h/R2=0.001. However, the errors
of the natural frequencies predicted by Chakraverty et al. [14] are increasing monotonically with the mode number in all
Table 6

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the annular plate with clamped outer and inner edge (CC) (u=1/3).

n R1/R2

0.2 0.4 0.6 0.8

0 34.609 61.872 139.61 559.16

1 36.103 62.996 140.48 559.84

2 41.820 66.672 143.13 561.89

3 53.388 73.630 147.79 565.33

4 70.501 84.594 154.83 570.24

5 90.991 99.904 164.31 576.68

Table 7

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the annular plate with simply supported outer and inner edge (SS) (u=1/3).

n R1/R2

0.2 0.4 0.6 0.8

0 16.733 28.183 62.122 247.07

1 19.432 30.079 63.681 248.28

2 27.285 36.143 68.395 252.00

3 40.340 46.321 76.103 258.17

4 57.120 60.423 87.160 266.85

5 76.261 78.087 101.16 278.26

Table 8

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the annular plate with free outer and inner edge (FF) (u=1/3).

n R1/R2

0.2 0.4 0.6 0.8

0 8.4419 8.5510 10.548 18.262

1 19.675 17.043 18.192 29.394

2 5.0508 4.5325 3.8641 3.1970

3 12.187 11.765 10.561 8.8719

4 21.209 21.262 20.233 16.901

5 32.967 32.862 32.242 27.288

Table 9

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the annular plate with clamped outer and simply supported inner edge (CS) (u=1/3).

n R1/R2

0.2 0.4 0.6 0.8

0 26.619 44.932 98.793 389.49

1 29.158 46.735 100.08 390.46

2 37.579 52.353 104.02 393.37

3 51.685 62.148 110.72 398.24

4 69.807 76.230 120.40 405.11

5 90.768 94.342 133.41 414.08
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cases. Moreover, the natural frequency parameters of the annular plates with different inner-to-outer radius ratio R1/

R2=0.2(0.2)0.8, m=1 and n=0(1)5 are calculated and presented in Tables 6–14. It is found the fundamental natural
frequency increases with increasing radius ratio R1/R2 in most kinds of boundary conditions when n=0 except the free–free
boundary conditions that the natural frequency parameter decreases monotonically from 5.0508 to 3.1970 when the
radius ratio R1/R2 increases from 0.2 to 0.8. The frequency parameter increases monotonically with respect to n for most
cases except the free–free boundary conditions where the frequency parameter changes quite irregularly. For higher
modes, similar phenomena can be observed, that is, the frequency parameter increases monotonically with the radius ratio
R1/R2, except for the free–free and clamp–free boundary conditions where changes can be quite irregular.
Table 10

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the annular plate with clamped outer and free inner edge (CF) (u=1/3).

n R1/R2

0.2 0.4 0.6 0.8

0 10.347 13.500 25.541 92.816

1 20.492 19.389 28.651 94.248

2 33.764 31.338 36.420 98.780

3 50.531 46.855 48.040 106.17

4 69.549 65.984 62.941 116.16

5 90.714 88.141 81.147 128.98

Table 11

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the annular plate with simply supported outer and clamped inner edge (SC) (u=1/3).

n R1/R2

0.2 0.4 0.6 0.8

0 22.767 41.261 94.264 381.64

1 24.322 42.548 95.296 382.52

2 30.088 46.699 98.564 385.18

3 41.329 54.332 104.19 389.62

4 57.405 65.918 112.73 395.95

5 76.308 81.530 123.47 404.17

Table 12

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the annular plate with simply supported outer and free inner edge (SF) (u=1/3).

n R1/R2

0.2 0.4 0.6 0.8

0 4.7325 4.7436 5.6630 9.4549

1 13.583 11.907 11.728 16.787

2 24.935 23.098 21.962 29.654

3 39.710 37.272 34.758 44.111

4 56.969 54.683 49.936 59.826

5 76.243 74.954 68.043 77.125

Table 13

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the annular plate with free outer and clamped inner edge (FC) (u=1/3).

n R1/R2

0.2 0.4 0.6 0.8

0 5.2135 9.0719 20.607 84.698

1 4.8171 9.1294 20.976 85.321

2 6.3431 10.366 22.275 87.265

3 12.395 14.726 25.716 90.470

4 21.233 22.530 32.533 95.343

5 32.969 33.456 40.562 102.12



Table 14

Dimensionless frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for the annular plate with free outer and simply supported inner edge (FS) (u=1/3).

n R1/R2

0.2 0.4 0.6 0.8

0 3.3133 3.6671 4.8087 8.7818

1 2.8425 3.9221 6.0442 12.482

2 5.5344 6.6546 9.7163 20.151

3 12.251 12.793 15.792 29.513

4 21.211 21.464 24.256 40.422

5 32.967 33.054 35.094 52.581

Table 15

Comparison of the present results to 3D solutions for the lowest six natural frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of the circular plate (u=0.3 [30,31]: h/

R2=0.01).

Results Mode number

1 2 3 4 5 6

Circular plate with free boundary condition

Liew and Yang [30] 5.3570 9.0018 12.433 20.466 21.820 33.463

Han and Liew [32] 5.2634 9.0766 12.240 20.521 - -

Present 5.3583 9.0031 12.439 20.475 21.835 33.495

Circular plate with simply supported boundary condition

Liew and Yang [30] 4.9360 13.894 25.603 29.706 39.930 48.439

Present 4.9352 13.898 25.615 29.719 39.957 48.479

Circular plate with clamped boundary condition

Liew and Yang [30] 10.250 21.326 34.974 39.878 51.155 60.968

Han and Liew [32] 10.226 21.276 34.892 39.785 51.033 60.823

Present 10.216 21.260 34.877 39.771 51.031 60.829

Table 16

Comparison of the present results to 3D solutions for the axisymmetric frequency parameters oR2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of the annular plate (u=0.3 [32], h/R2=0.001, R1/

R2=0.4).

Edges Results Mode number

1 2 3 4 5

CC Han and Liew [32] 61.871 170.89 335.34 554.59 828.64

Present 61.872 170.90 335.37 554.66 828.80

SC Han and Liew [32] 41.193 137.15 287.88 493.44 753.80

Present 41.261 137.11 287.96 493.61 753.92

FC Han and Liew [32] 9.0205 58.548 168.68 333.05 552.29

Present 9.0719 58.672 168.80 333.18 552.36

CS Han and Liew [32] 45.044 140.93 291.74 497.35 757.74

Present 44.932 140.81 291.64 497.45 757.86

SS Han and Liew [32] 28.122 110.56 247.69 439.61 686.32

Present 28.184 110.50 247.51 439.58 686.41

FS Han and Liew [32] 3.6727 42.556 138.68 289.46 495.06

Present 3.6671 42.556 138.69 289.48 495.10

CF Han and Liew [32] 13.603 67.157 177.01 341.36 560.58

Present 13.500 66.925 176.77 341.13 560.65

SF Han and Liew [32] 4.7640 47.464 143.25 293.93 499.45

Present 4.7436 47.282 143.06 293.76 499.49

FF Han and Liew [32] 8.6139 65.681 174.71 339.09 558.30

Present 8.5510 65.567 174.58 338.96 552.36
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6.3. Comparison to the 3D results

For further validations, the present results are compared to that obtained based on the three-dimensional (3D) elasticity
solutions. Table 15 presents the lowest six natural frequency parameters of circular plates for all the three case boundary
conditions with an aspect of h/R2=0.01. It is seen that the present results using the proposed symplectic method agree well
with 3D results calculated by Liew and Yang [30] and Zhou et al. [31]. In addition, the axisymmetric frequency parameters
(n=0) for the annular plates are compared with the 3D frequency solutions obtained by Han and Liew [32] in Table 16.
Excellent agreement is also recorded in Table 16. All the comparison studies above proved a solid demonstrations that the
present symplectic elasticity approach is very efficient for exact analysis of circular and annular plates natural vibration
base on the classical Kirchhoff plate theory.

7. Conclusion

In this paper, a new Hamiltonian approach has been employed to solve natural vibration of circular and annular thin
plates. The Hamiltonian dual equations were derived based on the mixed energy Hamiltonian function. The Hamiltonian
equation was then translated into a differential eigenvalue equation in the in-plane domain of the plate, and it was then
analytically solved with rigorous derivation using the method of variable separation and expansion of eigensolutions. The
zero- and nonzero-eigenvalues solutions represented the symmetrical and asymmetrical natural vibration, respectively.
The exact normal modes and frequency equations can be obtained for any combination of boundary conditions. The natural
frequencies are calculated for these plates with all possible combinations of free, clamped and simply supported boundary
conditions and inner-to-outer radius ratios. These results can be used to validate the accuracy of other numerical method
as benchmark values. The application of the symplectic dual method are not limited to free vibration problems of the
circular and annular plates, and can be extended to forced vibration problems, the static and dynamic problems of thick
plate and others.
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